Pomocí substituce urči neurčitý integrál \int \frac{1}{(2 x+3)^{3}} \mathrm{~d} x.
\int \frac{1}{(2 x+3)^{3}} d x=-\frac{1}{4(2 x+3)^{3}}+C
\int \frac{1}{(2 x+3)^{3}} d x=-\frac{1}{2(2 x+3)^{2}}+C
\int \frac{1}{(2 x+3)^{3}} d x=-\frac{1}{4(2 x+3)^{2}}+C
\int \frac{1}{(2 x+3)^{3}} d x=-\frac{1}{8(2 x+3)^{2}}+C