Bestimme die Vereinigung der Intervalle A=\langle-1;1\rangle,\:B=(0;2\rangle und C=(3 ; 5\rangle.
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 2\rangle \cup(3 ; 5\rangle
Sin marcar
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 5\rangle
Sin marcar
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 3\rangle \cup(3 ; 5\rangle
Sin marcar
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 1\rangle \cup(3 ; 5\rangle
Sin marcar
Pista
Pista
Die Vorgehensweise wird sehr ähnlich wie bei der 4 Aufgabe sein. Als Ergebnis der Vereinigung erhalten wir ein neues Intervall, welches alle Zahlen beinhaltet, die minimal in einem Intervall von den dreien vorhanden sind.