Nejmenší společný násobek
Urči nejmenší společný násobek dvojice čísel 36 a 120.
n(36 ; 120)=2^{3} \cdot 3^{2} \cdot 5^{0}=8 \cdot 9 \cdot 1=72
n(36 ; 120)=2^{3} \cdot 3^{1} \cdot 5^{1}=8 \cdot 3 \cdot 5=120
n(36 ; 120)=2^{2} \cdot 3^{2} \cdot 5^{1}=4 \cdot 9 \cdot 5=180
n(36 ; 120)=2^{3} \cdot 3^{2} \cdot 5^{1}=8 \cdot 9 \cdot 5=360
V předchozím přikladu se jednalo o docela malá čísla, u kterých šlo určit jejich násobky jednoduše (máš pravdu, že jak pro koho). U velkých čísel už to Ize jen stěží (zkus si udělat násobky čísla 1458 až třeba do milionu 🙂), a proto je nutné zavést nějaký lepší způsob, jak nejmenší společný násobek určit.
🍪 Nastavite plašč nevidnosti ⚡
Dobrodošli v čarobnem svetu piškotkov! 🧙♂️ Uporabljamo jih, da vam zagotovimo najboljšo izkušnjo in razumemo, kako čarate z našo aplikacijo. Ne skrbite, ti piškotki niso iz Bertie's Beans 1000 Times Different - tu so zato, da vse deluje čarobno in da lahko še naprej izboljšujemo našo aplikacijo. Vaše nastavitve so za nas kot čarobna paličica - kadar koli jih lahko kasneje spremenite. Preprosto kliknite na povezavo v nogi z naslovom "Uredi piškotke 🍪" in pričarajte nastavitve točno po svojih željah. Če želite izvedeti več o tem, kako obdelujemo piškotke, lahko to najdete na tej strani.