Důkaz o výroku pro číslo a
Dokaž, že platí výrok: jestliže a je menší než 1 a zároveň větší než 0 , pak a^{2} je menší než a.
Negace původní věty (tj. 0<a<1\implies a^2=a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2\geq a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2>a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2\leq a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
U tohoto přikladu použiješ důkaz sporem. Ten spočívá v tom, že dokážeš neplatnost znegovaného výroku, který je zadaný. Nejdříve si větu přepíšeš do jazyka matematiků zapsanou pomocí implikace. Tu následně zneguješ a pomocí přímého důkazu dokážeš neplatnost výroku.
🍪 Nastav si svoj plášť neviditeľnosti ⚡
Vitajte v čarovnom svete cookies! 🧙♂️ Používame ich, aby sme vám poskytli čo najlepší zážitok a pochopili, ako s našou aplikáciou kúzlite. Nebojte sa, tieto súbory cookie nie sú z Bertieho fazule 1000 krát inak - sú tu preto, aby všetko fungovalo čarovne a my sme mohli našu aplikáciu neustále zlepšovať. Vaše preferencie sú pre nás ako čarovný prútik - môžete ich kedykoľvek neskôr zmeniť. Stačí kliknúť na odkaz v pätičke s názvom "Upraviť súbory cookie 🍪" a vyčarovať nastavenia presne podľa svojich predstáv. Ak chcete vedieť viac o tom, ako spracovávame súbory cookie, nájdete to na tejto stránke.