Důkaz o výroku pro číslo a
Dokaž, že platí výrok: jestliže a je menší než 1 a zároveň větší než 0 , pak a^{2} je menší než a.
Negace původní věty (tj. 0<a<1\implies a^2=a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2\leq a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2\geq a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
Negace původní věty (tj. 0<a<1\implies a^2>a) neplatí, tudíž platí věta původní (tj. 0<a<1\implies a^2<a)
U tohoto přikladu použiješ důkaz sporem. Ten spočívá v tom, že dokážeš neplatnost znegovaného výroku, který je zadaný. Nejdříve si větu přepíšeš do jazyka matematiků zapsanou pomocí implikace. Tu následně zneguješ a pomocí přímého důkazu dokážeš neplatnost výroku.
🍪 Impostare il mantello dell'invisibilità ⚡
Benvenuti nel magico mondo dei cookie! 🧙♂️ Li utilizziamo per offrirvi la migliore esperienza e per capire come fate la magia con la nostra app. Non preoccupatevi, questi cookie non provengono da Bertie's Beans 1000 Times Different: servono a far funzionare tutto magicamente, in modo da poter continuare a migliorare la nostra app. Le vostre preferenze sono come una bacchetta magica per noi: potete cambiarle in qualsiasi momento. Basta cliccare sul link nel piè di pagina chiamato "Modifica cookie 🍪" e creare le impostazioni che più vi piacciono. Se volete saperne di più su come trattiamo i cookie, potete trovarli in questa pagina.