Celá čísla v matematice
Rozhodni, která z následujících čísel jsou z oboru celých čísel: 5;9,2;\pi;-10;\frac{3}{2};0;\sqrt{2};1,\bar{7}\frac{}{}.
Výsledek je: 9,2 \in \mathbb{Z} ; \pi \in \mathbb{Z} ; \sqrt{2} \in \mathbb{Z}, či zkráceně \{9,2 ; \pi ; \sqrt{2}\} \in \mathbb{Z}.
Výsledek je: \frac{3}{2} \in \mathbb{Z} ; 1,\bar{7} \in \mathbb{Z} ; \pi \in \mathbb{Z}, či zkráceně \{\frac{3}{2} ; 1,\bar{7} ; \pi\} \in \mathbb{Z}.
Výsledek je: \sqrt{2} \in \mathbb{Z} ; 9,2 \in \mathbb{Z} ; 1,\bar{7} \in \mathbb{Z}, či zkráceně \{\sqrt{2} ; 9,2 ; 1,\bar{7}\} \in \mathbb{Z}.
Výsledek je: 5 \in \mathbb{Z} ;-10 \in \mathbb{Z} ; 0 \in \mathbb{Z}, či zkráceně \{-10 ; 0 ; 5\} \in \mathbb{Z}.
Máš rozhodnout, která z výše uvedených čísel patři do oboru celých čísel. O celých číslech už jistě víš, že existují jak kladná, neutrální (tj. číslo nula), tak i záporná, ale musejí být vždy celá (za desetinnou čárkou se bude nacházet vždy pouze číslo nula). Jsou to tedy čísla od minus nekonečna přes -4,-3,-2,-1,0,1,2,3,4, až do plus nekonečna.
🍪 Setzen Sie Ihre Unsichtbarkeitstarnung ⚡
Willkommen in der magischen Welt der Cookies! 🧙♂️ Wir verwenden sie, um dir das beste Erlebnis zu bieten und um zu verstehen, wie du mit unserer App zauberst. Keine Sorge, diese Cookies sind nicht von Bertie's Beans 1000 Times Different - sie sind dafür da, dass alles magisch funktioniert, damit wir unsere App weiter verbessern können. Deine Einstellungen sind für uns wie ein Zauberstab - du kannst sie jederzeit nachträglich ändern. Klicke einfach auf den Link "Cookies bearbeiten 🍪" in der Fußzeile und zaubere die Einstellungen genau nach deinem Geschmack. Wenn Sie mehr darüber wissen wollen, wie wir Cookies verarbeiten, finden Sie es auf dieser Seite.