Zjednodušení výrazu
Zjednoduš:
\( \large 12^{5} \cdot 6^{2} \cdot 33 \cdot 121^{2} \cdot 256 \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{18} \cdot 3^{9} \cdot 11^{4} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{19} \cdot 3^{8} \cdot 11^{4} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{20} \cdot 3^{8} \cdot 11^{5} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{21} \cdot 3^{7} \cdot 11^{6} \)
Pro zjednodušení mocnin potřebuješ prvočíselný základ čísel a znalost vzorečků pro snadné počítání s mocniteli.
🍪 Nastavite plašč nevidnosti ⚡
Dobrodošli v čarobnem svetu piškotkov! 🧙♂️ Uporabljamo jih, da vam zagotovimo najboljšo izkušnjo in razumemo, kako čarate z našo aplikacijo. Ne skrbite, ti piškotki niso iz Bertie's Beans 1000 Times Different - tu so zato, da vse deluje čarobno in da lahko še naprej izboljšujemo našo aplikacijo. Vaše nastavitve so za nas kot čarobna paličica - kadar koli jih lahko kasneje spremenite. Preprosto kliknite na povezavo v nogi z naslovom "Uredi piškotke 🍪" in pričarajte nastavitve točno po svojih željah. Če želite izvedeti več o tem, kako obdelujemo piškotke, lahko to najdete na tej strani.