\large{n{}\choose k}={n{}\choose k+1{}}\large {{10}\choose{7}} ={{10}\choose{3}} = \Large \frac{10!}{7!\cdot \left( 10-7\right) !}\large = 110Ni preverjeno
\large{n{}\choose k}={n{}\choose k+1{}}\large {{10}\choose{7}} ={{10}\choose{3}} = \Large \frac{10!}{7!\cdot \left( 10-7\right) !}\large = 130Ni preverjeno
\large{n{}\choose k}={n{}\choose k+1{}}\large {{10}\choose{7}} ={{10}\choose{3}} = \Large \frac{10!}{7!\cdot \left( 10-7\right) !}\large = 100Ni preverjeno
\large{n{}\choose k}={n{}\choose k+1{}}\large {{10}\choose{7}} ={{10}\choose{3}} = \Large \frac{10!}{7!\cdot \left( 10-7\right) !}\large = 120Ni preverjeno