Úprava výrazu v matematice
Uprav výraz:
\large 12 x ^{3}y^{3}\cdot 144 x ^{4}y^{2}: \left( 12 x ^{3}y^{2} \right) ^{2}
\large = 2^{2} \cdot 3^{2} \cdot x ^{1} \cdot y^{1} = 4 \cdot 9\cdot x \cdot y = 36 x y
\large = 2^{2} \cdot 3^{1} \cdot x ^{2} \cdot y^{1} = 4 \cdot 3\cdot x^{2} \cdot y = 12 x^{2} y
\large = 2^{2} \cdot 3^{1} \cdot x ^{1} \cdot y^{1} = 4 \cdot 3\cdot x \cdot y = 12 x y
\large = 2^{3} \cdot 3^{1} \cdot x ^{1} \cdot y^{1} = 8 \cdot 3\cdot x \cdot y = 24 x y
Tady budeš počítat s neznámými, ale neboj, je to úplně stejné jako s čísly. Pro výpočet těchto příkladů si připomeneš, že plus krát plus dává plus, minus krát minus je plus a minus krát plus se rovná minus. Pro zjednodušení mocnin budeš potřebovat prvočíselný základ a vzorečky pro snadné počítání s mocniteli.
🍪 Nastav si svoj plášť neviditeľnosti ⚡
Vitajte v čarovnom svete cookies! 🧙♂️ Používame ich, aby sme vám poskytli čo najlepší zážitok a pochopili, ako s našou aplikáciou kúzlite. Nebojte sa, tieto súbory cookie nie sú z Bertieho fazule 1000 krát inak - sú tu preto, aby všetko fungovalo čarovne a my sme mohli našu aplikáciu neustále zlepšovať. Vaše preferencie sú pre nás ako čarovný prútik - môžete ich kedykoľvek neskôr zmeniť. Stačí kliknúť na odkaz v pätičke s názvom "Upraviť súbory cookie 🍪" a vyčarovať nastavenia presne podľa svojich predstáv. Ak chcete vedieť viac o tom, ako spracovávame súbory cookie, nájdete to na tejto stránke.