Dělení čísla 4
Dokaž následující tvrzení přímým důkazem:
∀ n ∈ \mathbb{N} je \large n^{4} + 3n^{2} dělitelné 4
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}-n - 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
\large 4 \left( n^{2}+n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
Při dokazování přímo budeš postupovat tak, že z výroku A vyvodíš A1, z výroku A1 vyvodíš A2, z výroku A2 vyvodíš A3,… Takto budeš postupovat, dokud nevyvodíš výrok B, a v tu chvíli bude důkaz proveden. Máš za úkol dokázat, že výraz n4 + 3n2 je dělitelný 4 a že to platí pro všechna přirozená n. Hodnota n je libovolné přirozené číslo (1, 2, 3,…). Nejjednodušší bude, když to dokážeš nejdřív pro lichá čísla a následně pro sudá.
Obecný zápis lichého čísla: n = 2k – 1. Lichá čísla n si vyjádříš jako n = 2k – 1, protože když vynásobíš jakékoliv přirozené číslo dvěma a odečteš od výsledku jedničku, tak ti vyjde liché číslo, např. 2 ⋅ 5 – 1 = 9.
🍪 Nastav si svoj plášť neviditeľnosti ⚡
Vitajte v čarovnom svete cookies! 🧙♂️ Používame ich, aby sme vám poskytli čo najlepší zážitok a pochopili, ako s našou aplikáciou kúzlite. Nebojte sa, tieto súbory cookie nie sú z Bertieho fazule 1000 krát inak - sú tu preto, aby všetko fungovalo čarovne a my sme mohli našu aplikáciu neustále zlepšovať. Vaše preferencie sú pre nás ako čarovný prútik - môžete ich kedykoľvek neskôr zmeniť. Stačí kliknúť na odkaz v pätičke s názvom "Upraviť súbory cookie 🍪" a vyčarovať nastavenia presne podľa svojich predstáv. Ak chcete vedieť viac o tom, ako spracovávame súbory cookie, nájdete to na tejto stránke.