Důkaz o dělitelnosti
Dokaž následující tvrzení nepřímým důkazem:
Je-li n^2+2 dělitelné 3, pak n není dělitelné 3
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 6(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné šesti)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∣ 3(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (je dělitelné třemi)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 9(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné devíti)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 3(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné třemi)
Zde se po tobě bude chtít vytvořit obměněnou implikaci původního výroku a tu poté dokázat. Po vytvoření obměněné implikace už budeš postupovat stejně jako u přímého důkazu.
Nejdříve prohodíš oba výroky v implikaci a zároveň je zneguješ.
Obměněná implikace bude mít tvar: Je-li n dělitelné 3, pak n2 + 2 není dělitelné 3.
Obecný zápis čísla dělitelného 3:
🍪 Nastav si svoj plášť neviditeľnosti ⚡
Vitajte v čarovnom svete cookies! 🧙♂️ Používame ich, aby sme vám poskytli čo najlepší zážitok a pochopili, ako s našou aplikáciou kúzlite. Nebojte sa, tieto súbory cookie nie sú z Bertieho fazule 1000 krát inak - sú tu preto, aby všetko fungovalo čarovne a my sme mohli našu aplikáciu neustále zlepšovať. Vaše preferencie sú pre nás ako čarovný prútik - môžete ich kedykoľvek neskôr zmeniť. Stačí kliknúť na odkaz v pätičke s názvom "Upraviť súbory cookie 🍪" a vyčarovať nastavenia presne podľa svojich predstáv. Ak chcete vedieť viac o tom, ako spracovávame súbory cookie, nájdete to na tejto stránke.