Dělení čísla 4
Dokaž následující tvrzení přímým důkazem:
∀ n ∈ \mathbb{N} je \large n^{4} + 3n^{2} dělitelné 4
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
\large 4 \left( n^{2}-n - 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}+n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
Při dokazování přímo budeš postupovat tak, že z výroku A vyvodíš A1, z výroku A1 vyvodíš A2, z výroku A2 vyvodíš A3,… Takto budeš postupovat, dokud nevyvodíš výrok B, a v tu chvíli bude důkaz proveden. Máš za úkol dokázat, že výraz n4 + 3n2 je dělitelný 4 a že to platí pro všechna přirozená n. Hodnota n je libovolné přirozené číslo (1, 2, 3,…). Nejjednodušší bude, když to dokážeš nejdřív pro lichá čísla a následně pro sudá.
Obecný zápis lichého čísla: n = 2k – 1. Lichá čísla n si vyjádříš jako n = 2k – 1, protože když vynásobíš jakékoliv přirozené číslo dvěma a odečteš od výsledku jedničku, tak ti vyjde liché číslo, např. 2 ⋅ 5 – 1 = 9.
🍪 Impostare il mantello dell'invisibilità ⚡
Benvenuti nel magico mondo dei cookie! 🧙♂️ Li utilizziamo per offrirvi la migliore esperienza e per capire come fate la magia con la nostra app. Non preoccupatevi, questi cookie non provengono da Bertie's Beans 1000 Times Different: servono a far funzionare tutto magicamente, in modo da poter continuare a migliorare la nostra app. Le vostre preferenze sono come una bacchetta magica per noi: potete cambiarle in qualsiasi momento. Basta cliccare sul link nel piè di pagina chiamato "Modifica cookie 🍪" e creare le impostazioni che più vi piacciono. Se volete saperne di più su come trattiamo i cookie, potete trovarli in questa pagina.