Urč limitu postupnosti \( \normalsize a_{n}=\frac{5n}{n^2}-4 \).
\( \normalsize{\displaystyle\lim_{n\to\infty}\left(\frac{5n}{n^2}-4\right)=5} \)
\( \normalsize{\displaystyle\lim_{n\to\infty}\left(\frac{5n}{n^2}-4\right)=0} \)
\( \normalsize{\displaystyle\lim_{n\to\infty}\left(\frac{5n}{n^2}-4\right)=\infty} \)
\( \normalsize{\displaystyle\lim_{n\to\infty}\left(\frac{5n}{n^2}-4\right)=-4} \)
Pokrátiš zlomok premennou n. Dostaneš rozdiel dvoch postupností, zlomku a konštantnej postupnosti. Rozdelíš limitu na dve. Pred prvú limitu vytkneš päťku. Po spočítaní jednotlivých limít dostaneš nulu a mínus štvorku. Výsledná limita je mínus štyri.