Dokažte tvrzení sporem
Dokaž následující tvrzení sporem:
∀ x ∈ \mathbb{R} platí, že \large \Large \frac{x}{10}\large + 6x- 1,4 \lt \Large \frac{3}{5}\large + 6,1x
\large \Large \frac{x}{10}\large + 6x- 1,4 \leq \Large \frac{3}{5}\large + 6,1x\rightarrow -14 \leq 6 (tj. spor)
\large \Large \frac{x}{10}\large + 6x- 1,4 \geq \Large \frac{3}{5}\large + 6,1x\rightarrow -14 \geq 6 (tj. spor)
\large \Large \frac{x}{10}\large + 6x- 1,4 = \Large \frac{3}{5}\large + 6,1x\rightarrow -14 = 6 (tj. spor)
\large \Large \frac{x}{10}\large + 6x- 1,4 \gt \Large \frac{3}{5}\large + 6,1x\rightarrow -14 \gt 6 (tj. spor)
Připomeneš si, co vlastně znamená dokazování sporem. Nejdříve vytvoříš negaci původního výroku, u které dokážeš, že neplatí. Když dojdeš k závěru, že neplatí negace, tak poté původní tvrzení platí. Tvrzení \large \Large \frac{x}{10}\large + 6x- 1,4 \lt \Large \frac{3}{5}\large + 6,1x zneguješ a dokážeš, že negace, jež ti vznikne, neplatí. Změníš znaménko < na ≥ a vyřešíš nerovnici.
🍪 Configura tu capa de invisibilidad ⚡
¡Bienvenido al mágico mundo de las galletas! 🧙♂️ Los usamos para brindarte la mejor experiencia y para comprender cómo haces magia con nuestra aplicación. No te preocupes, estas galletas no son de Bertie's Beans 1000 veces diferentes: están aquí para hacer que todo funcione mágicamente para que podamos seguir mejorando nuestra aplicación. Tus preferencias son como una varita mágica para nosotros: puedes cambiarlas en cualquier momento después. Simplemente haga clic en el enlace en el pie de página llamado 🍪"Editar cookies " y evoque la configuración exactamente a su gusto. Si quieres saber más sobre cómo procesamos las cookies, puedes encontrarla en esta página.