Důkaz o dělitelnosti
Dokaž následující tvrzení nepřímým důkazem:
Je-li n^2+2 dělitelné 3, pak n není dělitelné 3
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∣ 3(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (je dělitelné třemi)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 6(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné šesti)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 3(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné třemi)
∀ n ∈ \mathbb{N} platí: 3n ∣ 3 ⇒ (3n)^{2} + 2 ∤ 9(tj. obměněná implikace)
\large \rightarrow \left( 3n\right) ^{2} + 2 = 9n^{2} + 2 (není dělitelné devíti)
Zde se po tobě bude chtít vytvořit obměněnou implikaci původního výroku a tu poté dokázat. Po vytvoření obměněné implikace už budeš postupovat stejně jako u přímého důkazu.
Nejdříve prohodíš oba výroky v implikaci a zároveň je zneguješ.
Obměněná implikace bude mít tvar: Je-li n dělitelné 3, pak n2 + 2 není dělitelné 3.
Obecný zápis čísla dělitelného 3:
🍪 Configura tu capa de invisibilidad ⚡
¡Bienvenido al mágico mundo de las galletas! 🧙♂️ Los usamos para brindarte la mejor experiencia y para comprender cómo haces magia con nuestra aplicación. No te preocupes, estas galletas no son de Bertie's Beans 1000 veces diferentes: están aquí para hacer que todo funcione mágicamente para que podamos seguir mejorando nuestra aplicación. Tus preferencias son como una varita mágica para nosotros: puedes cambiarlas en cualquier momento después. Simplemente haga clic en el enlace en el pie de página llamado 🍪"Editar cookies " y evoque la configuración exactamente a su gusto. Si quieres saber más sobre cómo procesamos las cookies, puedes encontrarla en esta página.