Union des intervalles
Détermine l'union des intervalles A=\langle-1 ; 1\rangle, B=(0 ; 2\rangle et C=(3 ; 5\rangle.
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 3\rangle
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle0 ; 5\rangle
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 2\rangle \cup(3 ; 5\rangle
A \cup B \cup C=\langle-1 ; 1\rangle \cup(0 ; 2\rangle \cup(3 ; 5\rangle=\langle-1 ; 5\rangle
La démarche à suivre est très semblable à celle de l'exemple 4 . Le résultat de l'union sera un nouvel intervalle qui comportera des nombres présents au moins dans un des trois intervalles.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.