Intersection des intervalles
Détermine l'intersection des intervalles A=(-2 ; 2\rangle et B=\langle 0 ; 4).
K=A \cap B=(-2 ; 2\rangle \cap\langle 0 ; 4)=\langle 0 ; 2\rangle
K=A \cap B=(-2 ; 2\rangle \cap\langle 0 ; 4)=\langle -2 ; 0\rangle
K=A \cap B=(-2 ; 2\rangle \cap\langle 0 ; 4)=\langle -2 ; 2\rangle
K=A \cap B=(-2 ; 2\rangle \cap\langle 0 ; 4)=\langle 0 ; 4\rangle
Tu dois faire une intersection de deux intervalles A et B pour en obtenir un troisième, nouveau, qui comportera des nombres communs à l’intervalle A et B.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.