Détermine l'intersection d'intervalles A \cap B \cap C, si A=\langle-1 ; 1\rangle, B=(0 ; 2\rangle et C=(2 ; 4\rangle.
A \cap B \cap C=\varnothing
Unchecked
A \cap B \cap C=(-1, 0]
Unchecked
A \cap B \cap C=(2, 3]
Unchecked
A \cap B \cap C=(0, 1]
Unchecked
Hint
Hint
Tu résoudras ce problème d'une façon similaire à celle de l'exemple n^{\circ}\:2. Le résultat de l’intersection sera un intervalle nouveau qui contiendra des éléments présents à la fois dans chacun des trois intervalles.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.