Zjednodušení výrazu
Zjednoduš následující výrazy pro a > 0 a b > 0:
\large \sqrt {a \cdot \sqrt {\sqrt [ 3] {{{a^{2}}}} \cdot \sqrt a } }
\large = {a^{\Large \frac{{17}}{{24}}\large }}
\large = {a^{\Large \frac{{21}}{{24}}\large }}
\large = {a^{\Large \frac{{19}}{{24}}\large }}
\large = {a^{\Large \frac{{19}}{{25}}\large }}
Zase odmocnina pod odmocninou a ještě o něco komplikovanější! Postup zachováš stejný. Začneš nejvnitřnějšími mocninami a postupně si vyjádříš všechny neznámé pod odmocninou pomocí racionálního exponentu. Použiješ tedy vzorec \large \sqrt [ r] {{{a^s}}} = {a^{\Large \frac{s}{r}\large }}.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.