Zjednodušení výrazu
Zjednoduš následující výrazy pro a > 0 a b > 0:
\large \sqrt {a \cdot \sqrt [ 3] {{a \cdot \sqrt [ 4] {a}}}}
\large = {a^{\left( {\Large \frac{1}{2}\large +\Large \frac{1}{6}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\left( {\Large \frac{{11}}{{24}}\large +\Large \frac{4}{{24}}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\Large \frac{{16}}{{24}}\large }}
\large = {a^{\left( {\Large \frac{1}{2}\large +\Large \frac{1}{6}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\left( {\Large \frac{{12}}{{24}}\large +\Large \frac{3}{{24}}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\Large \frac{{16}}{{24}}\large }}
\large = {a^{\left( {\Large \frac{1}{2}\large +\Large \frac{1}{6}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\left( {\Large \frac{{12}}{{24}}\large +\Large \frac{4}{{24}}\large +\Large \frac{2}{{24}}\large } \right) }} = {a^{\Large \frac{{18}}{{24}}\large }}
\large = {a^{\left( {\Large \frac{1}{2}\large +\Large \frac{1}{6}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\left( {\Large \frac{{12}}{{24}}\large +\Large \frac{4}{{24}}\large +\Large \frac{1}{{24}}\large } \right) }} = {a^{\Large \frac{{17}}{{24}}\large }}
A už zlehka přituhuje! Je tu odmocnina pod odmocninou a ještě jedna odmocnina pod ní. Začneš nejvnitřnější odmocninou.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.