Zjednodušení výrazů
Zjednoduš následující výrazy pro a > 0 a b > 0:
\large{{{a^{-\Large\frac{1}{2}\large}}}}\::{{{\:a^{\Large\frac{3}{2}}}}}
\large {a^{\left( { - \Large \frac{1}{2}\large -\Large \frac{1}{2}\large } \right) }} = {a^{ - \Large \frac{2}{2}\large }} = {a^{ - 1}}
\large {a^{\left( { - \Large \frac{1}{2}\large -\Large \frac{3}{2}\large } \right) }} = {a^{ - \Large \frac{4}{2}\large }} = {a^{ - 2}}
\large {a^{\left( { - \Large \frac{1}{2}\large -\Large \frac{5}{2}\large } \right) }} = {a^{ - \Large \frac{6}{2}\large }} = {a^{ - 3}}
\large {a^{\left( { - \Large \frac{1}{2}\large +\Large \frac{3}{2}\large } \right) }} = {a^{ \Large \frac{2}{2}\large }} = {a^{ 1}}
A je tu dělení! Prostě a jednoduše odečteš čísla v čitatelích. Zlomek v exponentu poté zkrátíš 2.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.