Úprava výrazů pro x, y ≠ 0
Uprav výrazy pro x, y ≠ 0:
\large \left[ \left( x^{3}y^{-2}\right) ^{2}\right] ^{4} \cdot \left( y^{-2}\right) ^{-2}
\large = \Large \frac{{{x^{24}}}}{{{y^{14}}}}\large = {\left( {\Large \frac{{{x^{2}}}}{y}\large } \right) ^{12}}
\large = \Large \frac{{{x^{24}}}}{{{y^{12}}}}\large = {\left( {\Large \frac{{{x^{2}}}}{y}\large } \right) ^{12}}
\large = \Large \frac{{{x^{24}}}}{{{y^{10}}}}\large = {\left( {\Large \frac{{{x^{2}}}}{y}\large } \right) ^{12}}
\large = \Large \frac{{{x^{20}}}}{{{y^{12}}}}\large = {\left( {\Large \frac{{{x^{2}}}}{y}\large } \right) ^{10}}
Tady úspěch spočívá pouze v řádném zápisu a pozorné práci s mocninami. Určitě použiješ některý ze vzorečků.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.