Zjednodušení výrazu
Zjednoduš:
\( \large 12^{5} \cdot 6^{2} \cdot 33 \cdot 121^{2} \cdot 256 \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{20} \cdot 3^{8} \cdot 11^{5} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{21} \cdot 3^{7} \cdot 11^{6} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{19} \cdot 3^{8} \cdot 11^{4} \)
\( II.\ x + {x^{ – 1}} \ne 0 \to x \ne – {x^{ – 1}} \to x \ne\ – \frac{1}{x} \to x^{2} \ne\ – 1 \to x \in \mathbb{R}\ –\ \{0\} \)
\( \large = 2^{18} \cdot 3^{9} \cdot 11^{4} \)
Pro zjednodušení mocnin potřebuješ prvočíselný základ čísel a znalost vzorečků pro snadné počítání s mocniteli.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.