Dělení čísla 4
Dokaž následující tvrzení přímým důkazem:
∀ n ∈ \mathbb{N} je \large n^{4} + 3n^{2} dělitelné 4
\large 4 \left( n^{2}-n - 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}+n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n- 1\right) ^{2}
\large 4 \left( n^{2}-n + 1\right) \cdot \left( 2n+ 1\right) ^{2}
Při dokazování přímo budeš postupovat tak, že z výroku A vyvodíš A1, z výroku A1 vyvodíš A2, z výroku A2 vyvodíš A3,… Takto budeš postupovat, dokud nevyvodíš výrok B, a v tu chvíli bude důkaz proveden. Máš za úkol dokázat, že výraz n4 + 3n2 je dělitelný 4 a že to platí pro všechna přirozená n. Hodnota n je libovolné přirozené číslo (1, 2, 3,…). Nejjednodušší bude, když to dokážeš nejdřív pro lichá čísla a následně pro sudá.
Obecný zápis lichého čísla: n = 2k – 1. Lichá čísla n si vyjádříš jako n = 2k – 1, protože když vynásobíš jakékoliv přirozené číslo dvěma a odečteš od výsledku jedničku, tak ti vyjde liché číslo, např. 2 ⋅ 5 – 1 = 9.
🍪 Set your invisibility cloak ⚡
Welcome to the magical world of cookies! 🧙♂️ We use them to give you the best experience and to understand how you make magic with our app. Don't worry, these cookies aren't from Bertie's Beans 1000 Times Different - they're here to make everything work magically so we can keep improving our app. Your preferences are like a magic wand to us - you can change them anytime afterwards. Just click on the link in the footer called "Edit Cookies 🍪" and conjure up the settings exactly to your liking. If you want to know more about how we process cookies, you can find it on this page.