\( \left (\frac{u_{1}}{2} \right)^{2} = \left (\frac{u_{2}}{2} \right)^{2} + a^{2} − 2 · \left (\frac{u_{2}}{2} \right) · a · \textrm{cos}\ \left (\frac{α_{1}}{2} \right) \)
\( 2 · \left (\frac{u_{2}}{2} \right) · a · \textrm{cos} \left (\frac{α_{1} }{2} \right) = \left (\frac{u_{2}}{2} \right)^{2} + a^{2} − \left (\frac{u_{1}}{2} \right)^{2} \)
\( \textrm{cos} \left (\frac{α_{1}}{2} \right) = \frac{\left (\frac{u_{2}}{2} \right)^{2}\ +\ a^{2}\ −\ \left (\frac{u_{1}}{2} \right)^{2}}{2\ ·\ \left (\frac{u_{2}}{2} \right)\ ·\ a} \)
\( \frac{α _{1} }{2} = \textrm{arccos} \frac{\left (\frac{u_{2}}{2} \right)^{2}\ +\ a^{2}\ −\ \left (\frac{u_{1}}{2} \right)^{2}}{2\ ·\ \left (\frac{u_{2}}{2} \right)\ ·\ a} \)
\( α _{1} = 2 · \textrm{arccos} \frac{\left (\frac{u_{2}}{2} \right)^{2}\ +\ a^{2}\ −\ \left (\frac{u_{1}}{2} \right)^{2}}{2\ ·\ \left (\frac{u_{2}}{2} \right)\ ·\ a} \)
\( α _{1} = 2 · \textrm{arccos}\ \frac{\left (\frac{42,67}{2} \right)^{2}\ +\ 24,24^{2}\ −\ \left (\frac{23,01}{2} \right)^{2}}{2\ ·\ \frac{42,67}{2}\ ·\ 24,24} \)
\( \normalsize\alpha_1=56\degree40^{\prime} \)