Důkaz dělitelnosti
Dokaž následující tvrzení přímým důkazem:
\( ∀ n ∈ \mathbb{N} \) je \( \large n^{4}-n^{2} \) dělitelné 12
\( \large n^{4}-n^{2}\left |12 \rightarrow n^{4}-n^{2}\right |3 \land n^{4}-n^{2}\left | 4 \)
\( \large n^{4}-n^{2}\left |12 \rightarrow n^{4}-n^{2}\right |8 \land n^{4}-n^{2}\left | 9 \)
\( \large n^{4}-n^{2}\left |12 \rightarrow n^{4}-n^{2}\right |5 \land n^{4}-n^{2}\left | 7 \)
\( \large n^{4}-n^{2}\left |12 \rightarrow n^{4}-n^{2}\right |2 \land n^{4}-n^{2}\left | 6 \)
Při dokazování přímo budeš postupovat tak, že z výroku \( A \) vyvodíš \( A_1 \), z výroku \( A1 \) vyvodíš \( A_2 \), z výroku \( A2 \) vyvodíš \( A_3 \),… Takto budeš postupovat, dokud nevyvodíš výrok B, a v tu chvíli bude důkaz proveden. Tvým úkolem je dokázat pro všechna přirozená čísla, že rozdíl jejich čtvrtých a druhých mocnin je dělitelný 12. Jde o poměrně vysoké číslo na to, aby byl jednoduchou úpravou sestaven výraz, ze kterého by se číslo 12 vytknulo, čímž by se dokázala dělitelnost. Číslo 12 je součin čísel 3 · 4, takže když dokážeš, že rozdíl mocnin je dělitelný 3 a 4, budeš mít dělitelnost dokázánou i pro číslo 12.
🍪 Setzen Sie Ihre Unsichtbarkeitstarnung ⚡
Willkommen in der magischen Welt der Cookies! 🧙♂️ Wir verwenden sie, um dir das beste Erlebnis zu bieten und um zu verstehen, wie du mit unserer App zauberst. Keine Sorge, diese Cookies sind nicht von Bertie's Beans 1000 Times Different - sie sind dafür da, dass alles magisch funktioniert, damit wir unsere App weiter verbessern können. Deine Einstellungen sind für uns wie ein Zauberstab - du kannst sie jederzeit nachträglich ändern. Klicke einfach auf den Link "Cookies bearbeiten 🍪" in der Fußzeile und zaubere die Einstellungen genau nach deinem Geschmack. Wenn Sie mehr darüber wissen wollen, wie wir Cookies verarbeiten, finden Sie es auf dieser Seite.