Úhly pravidelného trojúhelníku
Jak velké budou jednotlivé úhly daného pravidelného \( n \)−úhelníku?
\( \large n = 3 \)
\( \large \alpha = \Large \frac{ \left( n-2 \right) \cdot 180\degree }{n}\large = \Large \frac{ \left( 3-3 \right) \cdot 180\degree }{3}\large = \Large \frac{0\cdot 180\degree }{3}\large = \Large \frac{0\degree }{3}\large = 0\degree \)
\( \large \alpha = \Large \frac{ \left( n-2 \right) \cdot 180\degree }{n}\large = \Large \frac{ \left( 3-1 \right) \cdot 180\degree }{3}\large = \Large \frac{2\cdot 180\degree }{3}\large = \Large \frac{360\degree }{3}\large = 120\degree \)
\( \large \alpha = \Large \frac{ \left( n-2 \right) \cdot 180\degree }{n}\large = \Large \frac{ \left( 3-2 \right) \cdot 180\degree }{3}\large = \Large \frac{1\cdot 180\degree }{3}\large = \Large \frac{180\degree }{3}\large = 60\degree \)
\( \large \alpha = \Large \frac{ \left( n-2 \right) \cdot 180\degree }{n}\large = \Large \frac{ \left( 3-2 \right) \cdot 180\degree }{4}\large = \Large \frac{1\cdot 180\degree }{4}\large = \Large \frac{180\degree }{4}\large = 45\degree \)
Víš, že pro součet všech vnitřních úhlů daného pravidelného \( n \)−úhelníku platí vzorec \( (n − 2) · 180° \). Také víš, že v pravidelném \( n \)−úhelníku mají všechny úhly stejnou velikost. Proto stačí jejich součet vydělit jejich počtem.