Prevedenie funkcie na vrcholový tvar
Preveď všobecný tvar funkcií na vrcholový:
\( \normalsize y=8x^2-16x-7 \)
\( \large y=8(x\ –\frac{16}{2\ \cdot\ 8})^2+(-\ 7-\frac{16^2}{2\ \cdot\ 8}) \)
\( \normalsize y=8(x\ –1)^2+(-\ 7-\ 4) \)
\( \normalsize y=8\left(x-1\right)^2-11 \)
\( \large y=8(x\ –\frac{16}{2\ \cdot\ 8})^2+(-\ 7+\frac{16^2}{4\ \cdot\ 8}) \)
\( \normalsize y=8(x\ –1)^2+(-\ 7+\ 8) \)
\( \normalsize y=8\left(x-1\right)^2+1 \)
\( \large y=8(x\ –\frac{16}{2\ \cdot\ 8})^2+(-\ 7-\frac{16^2}{8}) \)
\( \normalsize y=8(x\ –1)^2+(-\ 7-\ 32) \)
\( \normalsize y=8\left(x-1\right)^2-39 \)
\( \large y=8(x\ –\frac{16}{2\ \cdot\ 8})^2+(-\ 7-\frac{16^2}{4\ \cdot\ 8}) \)
\( \normalsize y=8(x\ –1)^2+(-\ 7-\ 8) \)
\( \normalsize y=8\left(x-1\right)^2-15 \)
Opäť len dosaď do vzorca a uprav.
🍪 Nastav si svůj neviditelný plášť ⚡
Vítej v kouzelném světě cookies! 🧙♂️ Používáme je, abychom ti přinesli ten nejlepší zážitek a pochopili, jak s naší aplikací kouzliš. Neboj, tyto sušenky nejsou z Bertíkových fazolek 1000x jinak - jsou tu, aby vše kouzelně fungovalo a my mohli naši aplikaci neustále vylepšovat. Tvé preference jsou pro nás jako kouzelná hůlka - můžeš je kdykoli poté změnit. Stačí kliknout na odkaz v patičce s názvem “Upravit cookies 🍪” a vykouzlit si nastavení přesně podle svých představ. Pokud chceš vědět více informací o zpracování cookies, najdeš je na této stránce.