Urči diferenciu aritmetickej postupnosti \( a_{n}=2 n-4 \).
\( \begin{array}{l}d=(2 n-2)-(2 n-5) \\ d=2 n-2-2 n+5 \\ d=3\end{array} \)
\( \begin{array}{l}d=(2 n-1)-(2 n-4) \\ d=2 n-1-2 n+4 \\ d=3\end{array} \)
\( \begin{array}{l}d=(2 n-2)-(2 n-4) \\ d=2 n-2-2 n+4 \\ d=2\end{array} \)
\( \begin{array}{l}d=(2 n-3)-(2 n-4) \\ d=2 n-3-2 n+4 \\ d=1\end{array} \)