Kořeny komplexní rovnice
Urči v \mathbb{C} kořeny rovnice \mathrm{i} \sqrt{3} x^{2}+x-\frac{1}{4}=0.
K=\left\{\frac{\sqrt{6}}{12}-\frac{2 \sqrt{3}+3 \sqrt{2}}{12} \mathrm{i} ;-\frac{\sqrt{3}}{12}+\frac{2 \sqrt{3}-3 \sqrt{2}}{12} \mathrm{i}\right\}
K=\left\{\frac{\sqrt{6}}{12}-\frac{2 \sqrt{3}-3 \sqrt{2}}{12} \mathrm{i} ;-\frac{\sqrt{3}}{12}-\frac{2 \sqrt{3}+3 \sqrt{2}}{12} \mathrm{i}\right\}
K=\left\{\frac{\sqrt{6}}{12}-\frac{2 \sqrt{3}-3 \sqrt{2}}{12} \mathrm{i} ;-\frac{\sqrt{3}}{12}+\frac{2 \sqrt{3}+3 \sqrt{2}}{12} \mathrm{i}\right\}
K=\left\{\frac{\sqrt{6}}{12}+\frac{2 \sqrt{3}-3 \sqrt{2}}{12} \mathrm{i} ;-\frac{\sqrt{3}}{12}-\frac{2 \sqrt{3}+3 \sqrt{2}}{12} \mathrm{i}\right\}
Zde máš za úkol vypočítat kořeny kvadratické rovnice s komplexními koeficienty. Vypíšeš si jednotlivé koeficienty a dosadíš je do vzorečku pro výpočet diskriminantu a kořenů kvadratické rovnice. Diskriminant přepíšeš do goniometrického tvaru a pak ho odmocníš. Nakonec všechno dosadíš do vzorečku pro výpočet kořenů kvadratické rovnice a výsledný výraz upravíš do tvaru a+b \mathrm{i}.