Kořeny binomické rovnice
Urči kořeny binomické rovnice x^{3}+1-\mathbf{i}=0.
K=\left\{\sqrt[6]{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) ; \sqrt[6]{2}\left(\cos \frac{11 \pi}{3}+i \sin \frac{11 \pi}{3}\right) ; \sqrt[6]{2}\left(\cos \frac{19 \pi}{10}+i \sin \frac{19 \pi}{10}\right)\right\}
K=\left\{\sqrt[6]{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) ; \sqrt[6]{2}\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right) ; \sqrt[6]{2}\left(\cos \frac{19 \pi}{8}+i \sin \frac{19 \pi}{8}\right)\right\}
K=\left\{\sqrt[6]{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) ; \sqrt[6]{2}\left(\cos \frac{11 \pi}{4}+i \sin \frac{11 \pi}{4}\right) ; \sqrt[6]{2}\left(\cos \frac{19 \pi}{12}+i \sin \frac{19 \pi}{12}\right)\right\}
K=\left\{\sqrt[6]{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) ; \sqrt[6]{2}\left(\cos \frac{11 \pi}{2}+i \sin \frac{11 \pi}{2}\right) ; \sqrt[6]{2}\left(\cos \frac{19 \pi}{6}+i \sin \frac{19 \pi}{6}\right)\right\}
Máš za úkol určit kořeny kubické rovnice. Protože se jedná o rovnici kubickou, víš, že budou výsledky tři. Aby šlo určit kořeny zadané rovnice, převedeš komplexní číslo 1-i na pravou stranu rovnice a převedeš ho do goniometrického tvaru. Všechno pak dosadíš do vzorečku pro výpočet kořenů binomické rovnice. A postupně spočítáš všechna tři řešení.