Goniometrický tvar komplexního čísla
V goniometrickém tvaru vyjádři komplexní číslo z=(1-i) \cdot\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right).
z=(1-i) \cdot\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)=\sqrt{2} \cos \left(\frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
z=(1-i) \cdot\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)=\sqrt{2} \cos \left(\frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
z=(1-i) \cdot\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)=\sqrt{2} \cos \left(\frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
z=(1-i) \cdot\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)=\sqrt{3} \cos \left(\frac{\pi}{6}+i \sin \frac{\pi}{6}\right)