Řešení rovnice cos(4x) = 2√2/4
Vyřeš v \mathbb{R} rovnici \cos\:4x=\frac{2 \sqrt{2}}{4}.
K=\bigcup_{k \in \mathbb{Z}}\left\{\frac{\pi}{16}+\frac{k \pi}{4} ; \frac{3 \pi}{16}+\frac{k \pi}{4}\right\}
K=\bigcup_{k \in \mathbb{Z}}\left\{\frac{\pi}{16}+\frac{k \pi}{3} ; \frac{7 \pi}{16}+\frac{k \pi}{3}\right\}
K=\bigcup_{k \in \mathbb{Z}}\left\{\frac{\pi}{8}+\frac{k \pi}{2} ; \frac{5 \pi}{16}+\frac{k \pi}{2}\right\}
K=\bigcup_{k \in \mathbb{Z}}\left\{\frac{\pi}{16}+\frac{k \pi}{2} ; \frac{7 \pi}{16}+\frac{k \pi}{2}\right\}