Dokáž nepriamym dôkazom,, že platí nasledujúce tvrdenie:
\( \forall n \in \mathbb{N}: 5 \nmid n^{2} \Rightarrow 5 \nmid n \)
Obmenená implikácia je \( 5|n \Rightarrow 10| n^{2} \) : pre \( n=5 k:(5 k)^{2}=25 k^{2}=10\left(2.5 k^{2}\right) \)\( \rightarrow \) výraz je po umocnení deliteľný číslom 10.
Není zaškrtnuto
Obmenená implikácia je \( 5|n \Rightarrow 5| n^{3} \) : pre \( n=5 k:(5 k)^{3}=125 k^{3}=5\left(25 k^{3}\right) \)\( \rightarrow \) výraz je po umocnení deliteľný číslom 5.
Není zaškrtnuto
Obmenená implikácia je \( 5|n \Rightarrow 5| n^{4} \) : pre \( n=5 k:(5 k)^{4}=625 k^{4}=5\left(125 k^{4}\right) \)\( \rightarrow \) výraz je po umocnení deliteľný číslom 5.
Není zaškrtnuto
Obmenená implikácia je \( 5|n \Rightarrow 5| n^{2} \) : pre \( n=5 k:(5 k)^{2}=25 k^{2}=5\left(5 k^{2}\right) \)\( \rightarrow \) výraz je po umocnení deliteľný číslom 5.
Není zaškrtnuto
🍪 Nastav si svůj neviditelný plášť ⚡
Vítej v kouzelném světě cookies! 🧙♂️ Používáme je, abychom ti přinesli ten nejlepší zážitek a pochopili, jak s naší aplikací kouzliš. Neboj, tyto sušenky nejsou z Bertíkových fazolek 1000x jinak - jsou tu, aby vše kouzelně fungovalo a my mohli naši aplikaci neustále vylepšovat. Tvé preference jsou pro nás jako kouzelná hůlka - můžeš je kdykoli poté změnit. Stačí kliknout na odkaz v patičce s názvem “Upravit cookies 🍪” a vykouzlit si nastavení přesně podle svých představ. Pokud chceš vědět více informací o zpracování cookies, najdeš je na této stránce.